Q.P. Code: 18EC0414

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations August-2021

DIGITAL SIGNAL PROCESSING

(Common to ECE & EEE)

Time: 3 hours

Max. Marks: 60

5M

10M

R18

PART-A

(Answer all the Questions $5 \times 2 = 10$ Marks)

1	a	What is the relationship between Fourier series coefficients of a periodic sequence	2M
		and DFT?	
	b	What is the main disadvantage of direct form realization?	2 M
	c	Define Gibb's phenomenon.	2 M
	d	What is meant by input quantization error?	2M
	e	Mention the applications of PDSP's.	2M

PART-B

(Answer all Five Units $5 \ge 10 = 50$ Marks)

UNIT-I

2	a	Compute the 4-point DFT of the sequence and plot magnitude and phase response	7M
		$\mathbf{x}(\mathbf{n}) = 1$; $0 \le \mathbf{n} \le 2$	
		= 0 ; otherwise	
	b	Explain the relationship between DFT to the Z-Transform.	3M
		OR	

3 Compute 8-point DFT of the sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ using radix-2 DIT-FFT 10M Algorithm.

UNIT-II

- **4 a** For the analog transfer function $H(s) = \frac{2}{(s+1)(s+2)}$, Determine H(z) using impulse 5M invariance method. Assume T=1 Sec.
 - **b** An LTI System is described by the difference equation $y(n)+a_1y(n-1)=x(n)+b_1x(n-1)$. Determine its direct form I structure.

OR

5 Determine an analog Chebyshev filter transfer function that satisfies the constraints 10M

$$\frac{1}{\sqrt{2}} \le |H(j\Omega)| \le 1 \quad ; \quad 0 \le \Omega \le 2$$
$$|H(j\Omega)| \le 0.1 \quad ; \quad \Omega \ge 4$$
$$\boxed{\text{UNIT-III}}$$

6 Design an ideal Low Pass Filter with a frequency response

$$H_d(e^{jw}) = 1 \quad for - \frac{\pi}{2} \le |\omega| \le \frac{\pi}{2}$$
$$= 0 \qquad \qquad \frac{\pi}{2} \le |\omega| \le \pi$$

Find the values of h(n) for N=11. Find H(z) and plot the magnitude response.

Page 1 of 2

Q.P. (R	18
	OR	,
7	a Determine the Direct form realization of system function $H(z) = 1 + 2 z^{-1} - 3 z^{-2} - 4 z^{-3} + 5 z^{-4}$	5M
	b State and explain the properties of FIR filters. State their importance. UNIT-IV	5M
8	a Compare floating point with fixed point arithmetic.	5M
	b Summarize the various forms of representing the numbers in digital systems.	5M
	OR	
9	Explain the characteristics of a limit cycle oscillation with respect to the system described by the equation $y(n)=0.95y(n-1) + x(n)$, when the product is quantized to 5 bits by rounding. The system is excited by an input $x(n)=0.75$ for $n=0$ and $x(n)=0$ for $n\neq 0$. Also, determine the dead band of the filter.	10M
	UNIT-V	
10	a List status registers bits of 5X and their functions.	5M
	b Categories the various interrupt types supported by 5X?	5M
	OR	
11	With a neat sketch explain the architecture of TMS 320C50 processor.	10M
	END	